

Nb₃Sn Short Sample Calculations and Strain Effects

A. Godeke

Lawrence Berkeley National Laboratory, Berkeley, CA

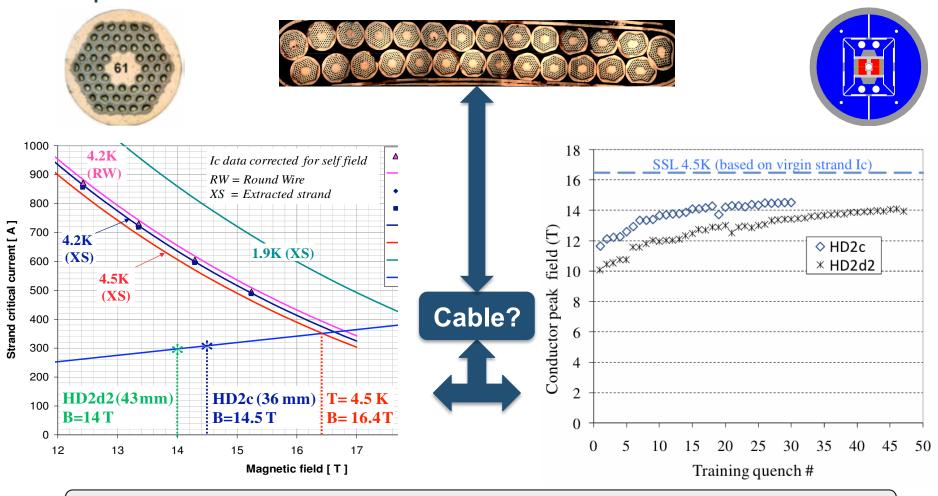
November 5, 2009 – LARP CM13 Meeting, Port Jefferson, NY

This work was partly supported by the Director, Office of Science, High Energy Physics, U.S. Department of Energy under contract No. DE-AC02-05CH11231

Magnet performance assessment

LAWRENCE BERKELEY NATIONAL LABORATORY

Example: LBNL – HD2



Performance is mainly judged from extracted strand data: What is $I_c(B,T,\varepsilon)$?

Parameterizations: $I_c(B,T,\varepsilon)$

LAWRENCE BERKELEY NATIONAL LABORATORY

$I_{\rm c}$ scaling vs. B, T, ε

Separation of parameters:

$$F_{P} = J_{c}(B, T, \varepsilon) \times B$$

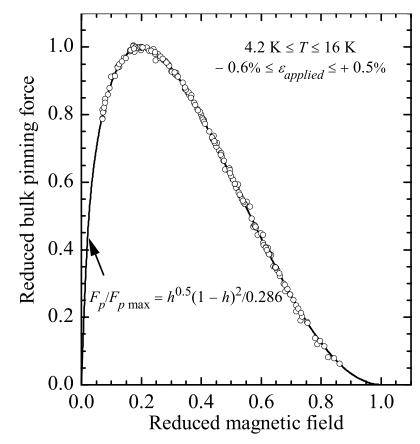
= $C g(\varepsilon) h(t) f_{P}(b)$

- $t = T/T_c$, $b = B/B_{c2}$ $-T_c$ and B_{c2} are effective values
- $g(\varepsilon)$ = some function of strain -Common: $g(\varepsilon) = s(\varepsilon) \equiv B_{\rm c2}(\varepsilon)/B_{\rm c2m}$

$$F_{\rm P} \propto b^{0.5}(1-b)^2$$

Magnetic field dependence

• $F_P = C g(\varepsilon) h(t) f_P(b)$



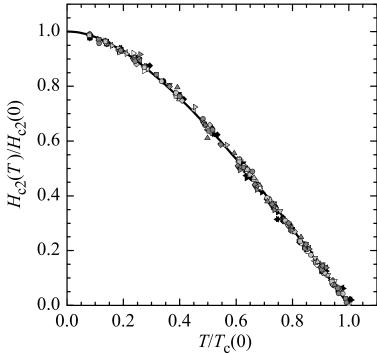
Godeke et al., Supercond. Sci. Techn. 19, R100 (2006)

Parameterizations: $I_c(B,T,\varepsilon)$

LAWRENCE BERKELEY NATIONAL LABORATORY

Temperature dependence

•
$$F_P = C g(\varepsilon) h(t) f_P(b)$$



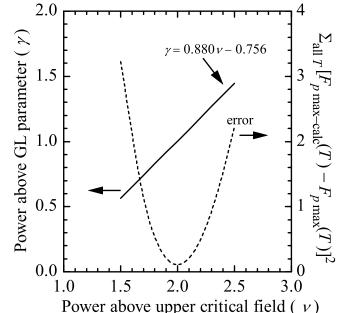
Godeke et al., J. Appl. Phys. 97, 093909 (2005)

•
$$B_{c2}(t)/B_{c2}(0) = MDG(t) \approx 1 - t^{1.52}$$

$$F_{\rm P} \propto {\rm MDG}(t) (1 - t^2)$$

General form

•
$$h(t) \propto B_{c2}(t)^{V} / \kappa_{1}(t)^{Y} = B_{c2}(t)^{(V-Y)} B_{c}(t)^{Y}$$



Power above upper critical field (ν) Godeke et al., Supercond. Sci. Techn. **19**, R100 (2006)

•
$$h(t) \propto B_{c2}(t) B_{c}(t)$$

•
$$h(t) = MDG(t)(1 - t^2)$$

 $\approx (1 - t^{1.52})(1 - t^2)$

Parameterizations: $I_c(B,T,\varepsilon)$

LAWRENCE BERKELEY NATIONAL LABORATOR

Resulting relations

- $F_P = C g(\varepsilon) h(t) f_P(b)$
 - $I_c(B, T, \varepsilon) B = C s(\varepsilon) MDG(t) (1 t^2) b^{0.5} (1 b)^2$

Mathematical re-hash: Godeke, Mentink, et al., IEEE Trans. Appl. Supercond. 19, 2610 (2009)

$$I_{c}(B,T,\varepsilon) = C' (1-t^{2}) b^{-0.5} (1-b)^{2}$$

with

•
$$t = T/T_c(0,\varepsilon)$$

•
$$T_c(0,\varepsilon) = T_{cm}(0) s(\varepsilon)^{1/3}$$

$$b = B/B_{c2}(T,\varepsilon)$$

$$B_{c2}(T,\varepsilon) = B_{c2m}(0) \text{ MDG}(t) s(\varepsilon)$$

$$\left(= B_{c2m}(0) (1 - t^{1.52}) s(\varepsilon)\right)$$

To what extend does the community agree?

Consensus within ITER (Mandated) **ENERGY**

LAWRENCE BERKELEY NATIONAL LABORATORY

Independent, objective comparison of alternatives

Par.

	$g(\varepsilon)$	h(t)	$f_P(b)$	$s(\varepsilon)$	
Ekin	$[s(\varepsilon)]^{\sigma}$ (†)	$(1-t^{\nu})^{\eta}$	$b^p(1-b)^q$	$s(\varepsilon) = 1 - a \varepsilon ^{1.7}$	10 – 1
Summers et al.	s(e)	$[1-0.31 t^2(1-1.77 \ln(t))]^{0.5}(1-t^2)^{2.5}$	$b^{0.5}(1-b)^2$	$s(\varepsilon) = 1 - a \varepsilon ^{1.7}$	4
Durham	$[s(\varepsilon)]^{\frac{w(n-2)+2+}{w}}$	$(1-t^{\nu})^{n-2}(1-t^2)^2$	$b^p(1-b)^q$	$s(\varepsilon) = 1 + c_2 \varepsilon^2 + c_3 \varepsilon^3 + c_4 \varepsilon^4$	13 – 1
Twente.	$s(\varepsilon)$	$(1-t^{1.52})(1-t^2)$	$b^{0.5}(1-b)^2$	$s(\varepsilon) = 1 + c_2 \varepsilon^2 + c_3 \varepsilon^3 + c_4 \varepsilon^4$ $s(\varepsilon) = 1 + \frac{C_{a1} \left(\sqrt{\varepsilon_{sh}^2 + \varepsilon_{0,a}^2} - \sqrt{(\varepsilon - \varepsilon_{sh})^2 + \varepsilon_{0,a}^2} \right) - C_{a2} \varepsilon}{1 - C_{a1} \varepsilon_{0,a}}$ $\varepsilon_{sh} = \frac{C_{a2} \varepsilon_{0,a}}{\sqrt{C_{a1}^2 - C_{a2}^2}}$ $s(\varepsilon) = \frac{1}{\varepsilon_{sh}^2 + \varepsilon_{0,a}^2}$	7
Markiewicz	-	-		$s(\varepsilon) = \frac{1}{1 + c_2 \varepsilon^2 + c_3 \varepsilon^3 + c_4 \varepsilon^4}$	
Oh and Kim	$[s_{\scriptscriptstyle B}($	(ϵ) $^{2.5}$ $[k(T,\epsilon)]^{0.5}$ $(1-t^{2.17})^{2.5}$ $(1+t^{2.17})^{2.5}$	$b^{0.5}(1-b)^2$	- 1	9 – 12
ITER-2008	s(e)	$(1-t^{1.52})(1-t^2)$	$b^{p}(1-b)^{q}$	$s(\varepsilon) = 1 + \frac{C_{a1}\left(\sqrt{\varepsilon_{sh}^2 + \varepsilon_{0,a}^2} - \sqrt{(\varepsilon - \varepsilon_{sh})^2 + \varepsilon_{0,a}^2}\right) - C_{a2}\varepsilon}{1 - C_{a1}\varepsilon_{0,a}}$ $\varepsilon_{sh} = \frac{C_{a2}\varepsilon_{0,a}}{\sqrt{C_{a1}^2 - C_{a2}^2}}$	9

Bottura and Bordini., IEEE Trans. Appl. Supercond. 19, 1521 (2009)

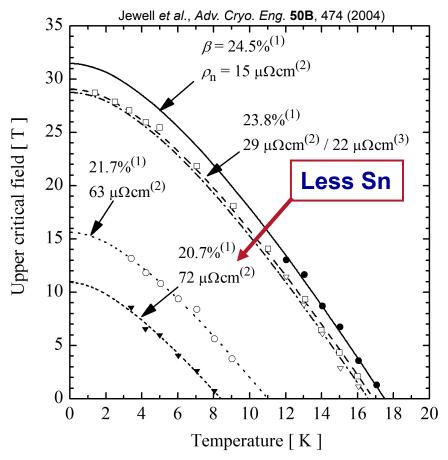
Achievable STD across entire space on wires = 3 ÷ 5%

Selection was made. What about the strain function $s(\varepsilon)$?

What does strain do?

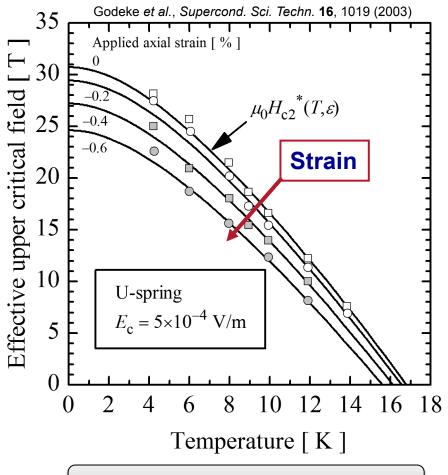
LAWRENCE BERKELEY NATIONAL LABORATORY

Composition effects on $B_{c2}(T)$



• Leads to averaged, effective $B_{c2}(T)$

Strain effects on $B_{c2}(T)$



Why does strain affect $B_{c2}(T)$?

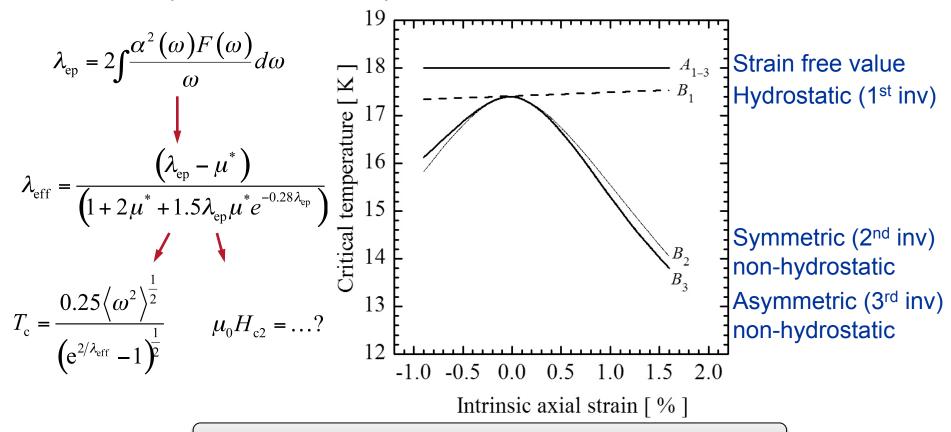
Fundaments of strain dependence

LAWRENCE BERKELEY NATIONAL LABORATORY

Strain modifies

- Lattice vibration modes (phonons)
- Electron-phonon interaction spectrum

Markiewicz, *Cryogenics* **44**, 676 and 895 (2004) Markiewicz, Trans, Appl. Supercond. **15**, 3368 (2005)



Can this be simplified while retaining physics and 3D?

A 3D based, axial $s(\varepsilon)$ for wires

LAWRENCE BERKELEY NATIONAL LABORATORY

From strain energy function

All invariants

$$\frac{H_{c2}^*(\epsilon)}{H_{c2}^*(\epsilon=0)} = (1 - C_h I_1) \left(1 - C_{d,1} \sqrt{J_2} - C_{d,2} J_3 \right)$$

In axial form for wires:

$$s(\varepsilon_{\rm I}) = \frac{H_{\rm c2}^*(\varepsilon_{\rm I})}{H_{\rm c2}^*(\varepsilon_{\rm I} = 0)}$$

$$= \frac{1 - C_{\rm a,1}\sqrt{(\varepsilon_{\rm I})^2 + (\varepsilon_{\rm 0,a})^2} - C_{\rm a,2}\left((\varepsilon_{\rm I})^3 - 3(\varepsilon_{\rm 0,a})^2\varepsilon_{\rm I}\right)}{1 - C_{\rm a,1}\varepsilon_{\rm 0,a}}$$

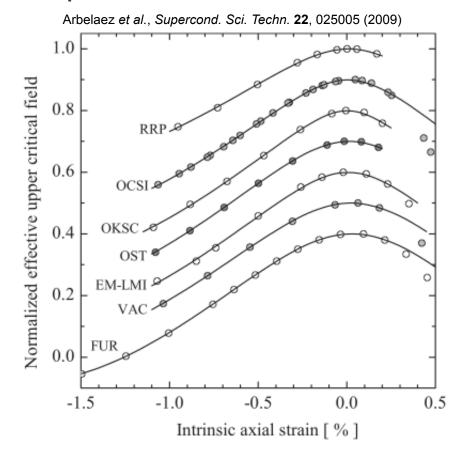
Without loss of accuracy:

•
$$C_{a2} = 1034 \times C_{a1}$$

• 3 fit parameters: C_{a1} , $\varepsilon_{0,a}$, ε_{m}

3D form to be validated

Comparison to measurement



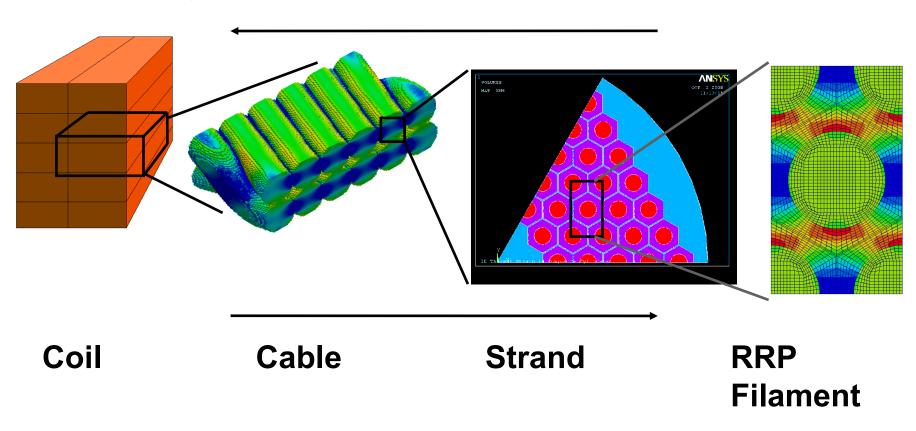
Why the emphasis on 3D?

Multi-scale model development

LAWRENCE BERKELEY NATIONAL LABORATORY

3D strain state at the filaments for applied macro-scale loads

• Arbelaez et al., EUCAS 2009



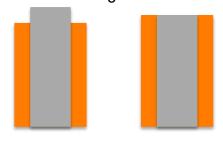
But, for now, only 1D is feasible

1 D strain states in systems

LAWRENCE BERKELEY NATIONAL LABORATORY

Ballpark axial strain states in Nb₃Sn fractions

Wire: Nb₃Sn in Cu



$$\varepsilon_{\rm a} = -0.35\%$$

Wire on ITER barrel

Ti-6Al-4V: $\varepsilon_a = -0.2\%$

SS: $\varepsilon_{a} = -0.3\%$

Ghosh, BNL report MDN-657-39 (2009)

THERMAL CONTRACTION FROM R.T. TO 4.2 K (OR10 K)

Copper:	-0.30%
Stainless Steel	-0.27%
Ti-6Al-4V	-0.15%
G-10	-0.28%
Nb3Sn	-0.15%
Inconel 600	-0.27%
Composite Nb3Sn strand:	-0.15% to -0.29%

Iron -0.2%

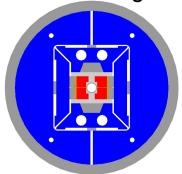
Ghosh, BNL report MDN-657-39 (2009)

Barrel Material	Δ lc/lc	Δε
Ti-Al-V	0.00	0
G-10	0.10	-0.10%
SS-304	0.08	-0.07%
SS- Soldered	0.19	-0.15%

Cable in SS holder

$$\varepsilon_{\rm a} = -0.3\%$$

Cable in magnet



Loaded iron enclosure with Ti-6Al-4V poles $\varepsilon_a = -0.2\%$?

From strand (via cable) to magnet

LAWRENCE BERKELEY NATIONAL LABORATORY

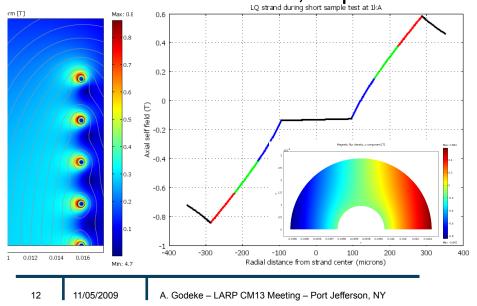
$I_{\rm c}$ results for extracted strands on Ti-alloy barrels

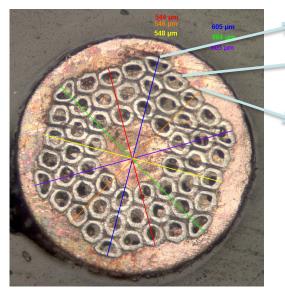
Self-field correction required

-Why?

Applied field [T]	Measured $I_{\rm c}$ [A]	Total field [T]
12.0	571	12.32
11.0	693	11.39
10.0	836	10.47

-How much? Kashikhin, unpublished





0.584 mT/A 0.555 mT/A

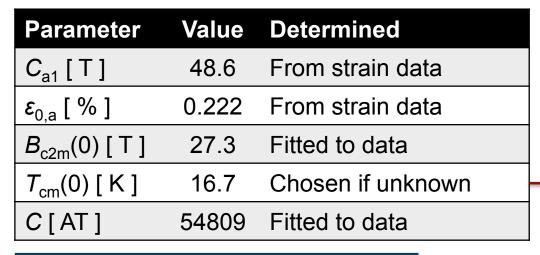
0.483 mT/A

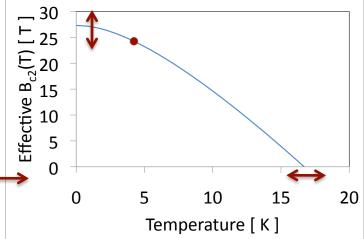
Parameterization of XS data

LAWRENCE BERKELEY NATIONAL LABORATORY

Bapplied [T]	Btotal [T]	lc-meas	lc-calc
11.5	11.85	628	625
11.0	11.39	693	691
10.5	10.92	761	762
10.0	10.47	836	838
9.5	10.01	916	919
9.0	9.56	1003	1007
8.0	8.67	1205	1199

Ti-6Al-4V barrel $\varepsilon_a = -0.2\%$ T = 4.23 K



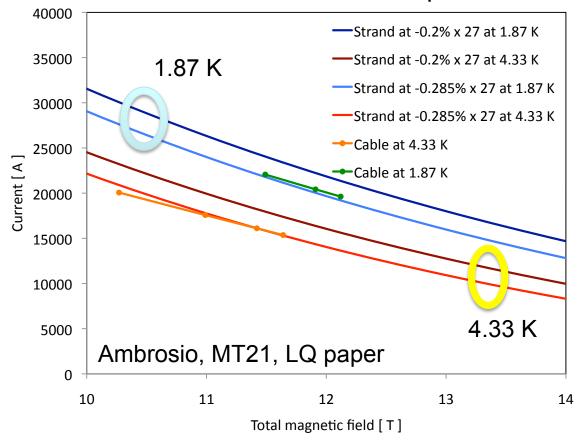


From XS to cable

LAWRENCE BERKELEY NATIONAL LABORATORY

Comparison of strand scaling and SF corrected cable data

Cable has additional – 0.085% axial strain compared to XS



What is the SS for the magnet? Closest strain match (barrel?)

Coil performance compared to XS parameterization

• XS scaling based on 4.2 K barrel data and estimated $T_{\rm cm}(0)$ = 16.7 K

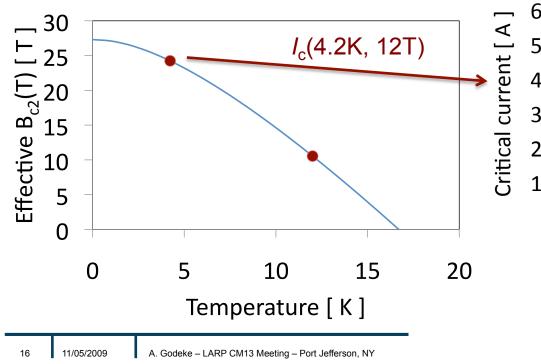


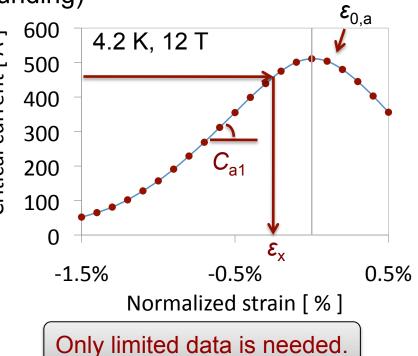
Minimum required XS dataset

LAWRENCE BERKELEY NATIONAL LABORATORY

What is the minimum data required to fully parameterize an XS?

- *I*_c(*B*) at 4.2 and, say, 12 K
 - -Provides $B_{c2}(4.2 \text{ K})$ and $B_{c2}(12 \text{ K})$
 - -...and thus $B_{\rm c2}(0,\varepsilon_{\rm x})$ and $T_{\rm c}(0,\varepsilon_{\rm x})$
- I_c(ε) at, say, 12 T and 4.2 K or 12 K
 - -Provides ε_x , C_{a1} (slope), and $\varepsilon_{0,a}$ (peak rounding)





Emerging consensus on scaling relations

- Powers of temperature dependence still argued
- 'Latest greatest' 3D strain model needs 3D verification
- All is scaled axially, due to unknown 3D strain state of Nb₃Sn

Models can reasonably explain differences XS – cable – magnet

- Different strain state cable vs. XS very plausible
- 3D mechanical modeling lacking
- Limited SS measurements required to map $I_c(B,T,\varepsilon)$
- Absolute prediction (why 93%?) remains inaccessible (3D strain)
- Relative changes can be truly predictive